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Communication is expensive!

Communication means moving data

Serial communication = moving data across memory hierarchy

Parallel communication = moving data across network

Communication usually dominates runtime, energy cost
⇒ Avoid communication to save time and energy!
How much can you avoid? Lower bound on data movement
Attain lower bound⇒ Communication-optimal algorithm
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Outline

1 Avoiding Communication in Linear Algebra
Lower bounds for matrix multiplication. . .
. . . attainable by tiling
Lower bounds for linear algebra (. . . attainable?)

2 Beyond Linear Algebra: Affine Array References
E.g., A(i + 2j ,3k + 4)
Extends previous lower bounds to larger class of programs.
Lower bounds are computable.
Matching upper bounds (i.e., optimal algorithms) in special case:
linear algebra, tensor contraction, direct N–body, database join,
etc. (when array references pick a subset of the loop indices)
Ongoing work addresses attainability in the general case.



First Lower Bound: Matrix Multiplication (“Matmul”)

A,B,C are N–by–N matrices.

C := C + A · B ⇒

for i = 1 : N,
for j = 1 : N,

for k = 1 : N,
C(i , j) += A(i , k) ∗ B(k , j)

Theorem ([HK81])
Consider computing C + A · B as above (in serial), with any order on
the N3 iterations. A processor must move

# Words Moved = Ω

(
#iterations

(fast memory size)1/2

)
= Ω

(
N3

M1/2

)
words between slow memory (of unbounded capacity) and fast
memory (of size M words).
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First Lower Bound: Geometric Intuition [ITT04] (1/2)

for i = 1 : N, for j = 1 : N, for k = 1 : N
C(i , j) += A(i , k) ∗ B(k , j)

Idea Bound volume(S) by the areas of the shadows S casts
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|S| ≤ |SA|1/2 · |SB|1/2 · |SC |1/2

by Loomis-Whitney ineq. [LW49]
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First Lower Bound: Geometric Intuition [ITT04] (2/2)

Idea Bound volume(S) by the areas of the shadows S casts
Idea Upper bound on data reuse⇒ lower bound on data

movement

Upper bound on number of operands: M
max(|SA|, |SB|, |SC |) ≤ M
|SA|+ |SB|+ |SC | ≤ M

Upper bound on number of iterations doable given M operands:
|S| ≤ |SA|1/2|SB|1/2|SC |1/2 ≤ M3/2

Data reuse = # iterations/# operands = O(M1/2)

(See [BDHS11] for precise argument.)

# words moved ≥ total # iterations/max data reuse = Ω(N3/M1/2)
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Attaining Lower Bounds — Tiling Matmul (1/3)

for i = 1 : N,
for j = 1 : N,

for k = 1 : N,
C(i , j) += A(i , k) ∗ B(k , j)
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Attaining Lower Bounds — Tiling Matmul (1/3)

Suppose M < N.

for i = 1 : N,
for j = 1 : N,

Load C(i , j) . . . N2 loads total
for k = 1 : N,

Load A(i , k) and B(k , j) . . . 2N3 loads total
C(i , j) += A(i , k) ∗ B(k , j)

Store C(i , j) . . . N2 stores total

# Words Moved = N2 + 2N3 + N2 = O(N3),

which is suboptimal.
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Attaining Lower Bounds — Tiling Matmul (2/3)

=
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Attaining Lower Bounds — Tiling Matmul (3/3)

Suppose M < N and block/tile size b|N and 3b2 ≤ M

for i = 1 : N/b,
for j = 1 : N/b,

Load block C(i , j) . . . (N/b)2 block loads total
for k = 1 : N/b,

Load blocks A(i , k) and B(k , j) . . . 2(N/b)3 block loads total
C(i , j) += A(i , k) ∗ B(k , j)

Store block C(i , j) . . . (N/b)2 block stores total

and for the choice b = (M/3)1/2 (assume integer),

# Words Moved =

(
N2

b2 + 2
N3

b3 +
N2

b2

)
· b2 = O

(
N3

M1/2

)
,

which is asymptotically optimal.
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Lower Bounds for Linear Algebra

Theorem ([BDHS11])

Suppose we are given an index set Z ⊂ Z3. Then the “Matmul-like”
program

for (i , j , k) ∈ Z, C(i , j) = C(i , j) +ij A(i , k) ∗ijk B(k , j)

must move Ω(|Z|/M1/2) words.

Under some technical assumptions, this yields lower bounds for
BLAS–3, e.g., A · B, A−1 · B;
One-sided factorizations, e.g., LU, Cholesky, LDLT , ILU(t);
Orthogonal factorizations, e.g., Gram–Schmidt, QR,
eigenvalue/singular value problems;
Tensor contractions, some graph algorithms; and
Sequences of these operations, interleaved arbitrarily.
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Outline

1 Avoiding Communication in Linear Algebra
Lower bounds for matrix multiplication. . .
. . . attainable by tiling
Lower bounds for linear algebra (. . . attainable?)

2 Beyond Linear Algebra: Affine Array References
E.g., A(i + 2j ,3k + 4)
Extends previous lower bounds to larger class of programs.
Lower bounds are computable.
Matching upper bounds (i.e., optimal algorithms) in special case:
linear algebra, tensor contraction, direct N–body, database join,
etc. (when array references pick a subset of the loop indices)
Ongoing work addresses attainability in the general case.



Generalization: Affine Array References

Given ‘loop iterations’ indexed (i1, . . . , id ) ∈ Zd , and parameters

Param. Description Example: Matmul
d dim. of iteration space (rank of Zd ) 3
Z iteration space, a subset of Zd {1, . . . ,N}3

Aj ,dj Each dj–dimensional array Aj is
subscripted by Zdj

{A,B,C}, {2,2,2}

φj subscripts φj : Zd → Zdj (affine
combinations of loop indices)

{(i , k), (k , j), (i , j)}

m number of ‘arrays’ (injections into
memory locations)

3

for i = (i1, . . . , id ) ∈ Z ⊆ Zd ,

inner_loopi(A1(φ1(i)), . . . ,Am(φm(i)))
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Lower Bound Strategy for Affine Array References

Proof strategy:
1 For any (finite) set E ⊆ Z of loop iterations that accesses O(M)

operands, find σ such that |E | = O(Mσ).
Matmul: σ = 3/2.

2 Since data reuse = O(Mσ−1), we conclude the program must
move Ω(|Z|/Mσ−1) words.

Matmul: Ω(N3/M1/2) words.
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Upper Bounds via Hölder-Brascamp-Lieb (HBL) theory

Theorem (Extension of [BCCT10, Theorem 2.4])

For j ∈ {1, . . . ,m}, let φj : Zd → Zdj be a group homomorphism and sj
be a nonnegative number. Then,

for all subgroups H of Zd , rank(H) ≤
m∑

j=1

sj · rank(φj(H)),

if and only if,

for all finite subsets E of Zd , |E | ≤
m∏

j=1

|φj(S)|sj .
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Lower Bounds for Affine Array References

Theorem (Communication Lower Bound)
A program of the form

for i = (i1, . . . , id ) ∈ Z, inner_loopi(A1(φ1(i)), . . . ,Am(φm(i)))

must move Ω(|Z|/M(
∑

j sj )−1) words, where s = (s1, . . . , sm) satisfies

rank(H) ≤
∑

j
sj · rank(φj(H)) for all subgroups H of Zd .

Proof sketch:
Let E be any ‘cache block’; bound data reuse (#iterations/#operands)

1 Operands: maxj |Aj(φj(E))| = maxj |φj(E)| ≤ M
2 Iterations: |E | ≤

∏
j |φj(E)|sj ≤ (maxj |φj(E)|)

∑
j sj

3 Data reuse: O(M(
∑

j sj )−1)⇒ # words moved: Ω(|Z|/M(
∑

j sj )−1).
(See [CDK+13] for precise argument.)
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A Linear Program to Compute σ (1/2)

We can write the set of inequalities (for subgroups H1, . . . ,Hi , . . . of Zd )
rank(H1) ≤

∑m
j=1 sj · rank(φj(H1))

...
rank(Hi) ≤

∑m
j=1 sj · rank(φj(Hi))

...


as a system of inequalities

rank(φ1(H1)) · · · rank(φm(H1))
...

...
rank(φ1(Hi)) · · · rank(φm(Hi))

...
...

 ·
s1

...
sm

 ≥


rank(H1)
...

rank(Hi)
...

 ,

or more succinctly, as ∆ · s ≥ r .
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A Linear Program to Compute σ (2/2)

Observation
Any s ∈ [0,∞)m that satisfies ∆ · s ≥ r leads to a valid upper
bound Mσ, with σ = σ(s) =

∑
j sj = 1T s.

Let sHBL denote the smallest σ(s), which leads to the tightest
upper bound Mσ(s), thus the tightest lower bound Ω(|Z|/Mσ(s)−1).

Definition (HBL–LP)

minimize σ(s) = 1T s s.t. ∆ · s ≥ r

Theorem
We can decidably compute sHBL, the minimizing σ(s).
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Special Case: Subscripts are Subsets of Indices

e.g., A(i , k),B(k , j),C(i , j), subsets of {i , j , k}

Theorem
Suppose every φj projects a subset of the loop indices i1, . . . , id . Let
∆e be the d rows of ∆ corresponding to subgroups Hi = 〈ei〉 for i = 1
to d . then the linear program

minimize 1T s s.t. ∆e · s ≥ 1

yields the same optimum σ(s) as HBL–LP, and furthermore, the dual
linear program

maximize 1T x s.t. ∆T
e · x ≤ 1

gives the optimal block size Mxi for each loop.

Note: In practice, we only need to solve the dual: 1T x = 1T s = sHBL. 16



Special Case: Example 1/3: Matmul

Original code:

for i = 1 : N, for j = 1 : N, for k = 1 : N,
C(i , j) += A(i , k) ∗ B(k , j)

Now we write down and solve the linear program

maximize sHBL = 1T x s.t. ∆T
e · x ≤ 1

∆e =


i j k

A 1 0 1
B 0 1 1
C 1 1 0

 ⇒ x =

1/2
1/2
1/2

 ⇒ sHBL = 3/2
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Special Case: Example 1/3: Matmul

Corollary
For any execution of the code, the number of words moved is
Ω(|Z|/MsHBL−1) = Ω(N3/M1/2), and this is attained by blocks of size
M1/2–by–M1/2–by–M1/2 in the following code (b = M1/2).

for i1 = 1 : b : N, for j1 = 1 : b : N, for k1 = 1 : b : N,
for i2 = 0 : b − 1, for j2 = 0 : b − 1, for k2 = 0 : b − 1,

(i , j , k) = (i1, j1, k1) + (i2, j2, k2)
. . . // inner loop with index (i , j , k)

The block sizes may have to be smaller by a constant factor, e.g.
bi = (M/m)xi = (M/3)1/2, to fit in cache simultaneously.

17



Special Case: Example 2/3: N–body

Original code:

for i = 1 : N, for j = 1 : N,
F (i) += compute_force(P(i),P(j))

Now we write down and solve the linear program

maximize sHBL = 1T x s.t. ∆T
e · x ≤ 1

∆e =


i j

F 1 0
P1 1 0
P2 0 1

 ⇒ x =

(
1
1

)
⇒ sHBL = 2
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Special Case: Example 2/3: N–body

Corollary
For any execution of the code, the number of words moved is
Ω(|Z|/MsHBL−1) = Ω(N2/M), and this is attained by blocks of size
M–by–M in the following code (b = M).

for i1 = 1 : b : N, for j1 = 1 : b : N,
for i2 = 0 : b − 1, for j2 = 0 : b − 1,

(i , j) = (i1, j1) + (i2, j2)
. . . // inner loop with index (i , j)

The block sizes may have to be smaller by a constant factor, e.g.
bi = (M/m)xi = M/3, to fit in cache simultaneously.
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Special Case: Example 3/3: Complicated Code

Original code:

for i1 = 1 : N, for i2 = 1 : N, . . . , for i6 = 1 : N,
A1(i1, i3, i6) += func1(A2(i1, i2, i4),A3(i2, i3, i5),A4(i3, i4, i6))
A5(i2, i6) += func2(A6(i1, i4, i5),A3(i3, i4, i6))

Now we write down and solve the linear program

maximize sHBL = 1T x s.t. ∆T
e · x ≤ 1

∆e =



i1 i2 i3 i4 i5 i6
A1 1 0 1 0 0 1
A2 1 1 0 1 0 0
A3,1 0 1 1 0 1 0
A4,A3,2 0 0 1 1 0 1
A5 0 1 0 0 0 1
A6 1 0 0 1 1 0


⇒ x =



2/7
3/7
1/7
2/7
3/7
4/7


⇒ sHBL = 15/7 19



Special Case: Example 3/3: Complicated Code

Corollary
For any execution of the code, the number of words moved is
Ω(|Z|/MsHBL−1) = Ω(N6/M8/7), and this is attained by blocks of size
M2/7–by–M3/7–by–M1/7–by–M2/7–by–M3/7–by–M4/7 in the following
code (bi = Mxi ).

for i1,1 = 1 : b1 : N, . . . , for i1,6 = 1 : b6 : N,
for i2,1 = 0 : b1 − 1, . . . , for i2,6 = 0 : b6 − 1,

(i1, . . . , i6) = (i1,1, . . . , i1,6) + (i2,1, . . . , i2,6)
. . . // inner loop with index (i1, . . . , i6)

The block sizes may have to be smaller by a constant factor, e.g.
bi = (M/m)xi = (M/6)xi , to fit in cache simultaneously.
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Extending to Other Machine Models

Our lower bounds extend to more
complicated machines:

Multiple levels of memory:
apply lower bound to each
pair of adjacent levels
Homogeneous parallel
processors: |Z|/P work per
processor
Hierarchical parallel
processors
Heterogeneous machines:
optimization problem to
balance |Z| work

SLOW	
  

FAST1	
  

FAST2	
  

FAST3	
   LOCAL	
  

LOCAL	
  LOCAL	
  

LOCAL	
  LOCAL	
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Optimal Parallel Algorithms (1/2)

Sequential tiling suggests parallel ‘working sets.’
Optimal parallel algorithms for ‘special case’ and Z = Nd :

Partition domain into tiles of size N/Mx1–by–· · · –by–N/Mxd

While there are unexecuted tiles
Assign unexecuted tiles to P processors
Communicate the data to each processor
Execute tiles

tiles per processor︷ ︸︸ ︷ m∏
j=1

Nd

Mxj

 · 1
P
·

words moved
per tile︷ ︸︸ ︷
O(M) =

words moved
per processor︷ ︸︸ ︷

O
(

Nd

PMsHBL−1

)
,

attaining the lower bound of Ω((|Z|/P)/MsHBL−1).
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Optimal Parallel Algorithms (2/2)

How much of the machine’s memory should you use?

M each processor’s working set size
Mcap each processor’s memory capacity
Marr total storage required for arrays, |

⋃
j Aj(φj(Z))|

Marr

P
≤ M ≤ min

(
Mcap,

(
|Z|
P

) 1
sHBL

)

Lower bound on M: store all arrays (across machine)
Upper bounds on M:

working sets must fit in processors’ memories
load balance (need at least P tiles)

(‘N.5D algorithms’) Writing M = CMarr/P, it is beneficial to use up

to C ≤
(
|Z|

1
sHBL

Marr

)
P

sHBL−1
sHBL copies of the data (Matmul: C ≤ P

1
3 )
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Ongoing Work: Optimal Algorithms

Goal: generalize duality argument beyond “special case”
Goal: bound constants hidden in ‘big-O’

N–body: O(M2) particle-particle interactions

Access φ1 = i , φ2 = j

This tiling is optimal.
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Ongoing Work: Optimal Algorithms

Goal: generalize duality argument beyond “special case”
Goal: bound constants hidden in ‘big-O’

N–body: O(M2) particle-particle interactions

Access φ1 = i − j , φ2 = i + j

This tiling is suboptimal.

23



Ongoing Work: Optimal Algorithms

Goal: generalize duality argument beyond “special case”
Goal: bound constants hidden in ‘big-O’

N–body: O(M2) particle-particle interactions

Access φ1 = i − j , φ2 = i + j

This tiling is optimal. Note:
two sets of tiles
generalizes to arbitrary
linear combinations of i
and j
group theory reveals
the optimal tiling
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Ongoing Work: Data Dependencies

Partial order on Z encoded as DAG
Some sets E are inadmissible (cannot be blocked)

Question
Can we tighten our bound |E | ≤

∏
j |φj(E)|sj for admissible sets?

Question
Can we extend our parallel theory to expose tradeoffs between:

Concurrency, efficiency, memory, communication, . . .
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Ongoing Work: Cost Model

Only discussed communication volume (bandwidth cost).
Extend model to address

# Messages/synchronizations (latency cost)

Claim
Message size 1 ≤ w ≤ M words, so a latency lower bound is

d# words moved/we = Ω(|Z|/(wMsHBL−1)) = Ω(|Z|/MsHBL ) messages.

Energy/power costs
Network topology, congestion

25



Conclusions

Communication is slowing you down!
Lower bounds motivate new/improved algorithms

Previous work: Matmul [HK81, ITT04], linear algebra [BDHS11]
This work: programs with affine array references

Goal: Compiler generates communication-optimal code
Tech. report [CDK+13] at bebop.eecs.berkeley.edu, or

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf

Thank You
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